Arsenic metabolites in human urine after ingestion of an arsenosugar.
نویسندگان
چکیده
BACKGROUND Arsenic-containing carbohydrates (arsenosugars) are common constituents of marine algae, including those species used as human food. The toxicology of these compounds has not been fully evaluated. METHODS Arsenic metabolites in human urine were monitored over a 4-day period after ingestion of a synthetic specimen of arsenosugar. The metabolites were determined by HPLC-inductively coupled plasma mass spectrometry, and structural assignments were confirmed with liquid chromatography-electrospray ionization mass spectrometry. RESULTS Approximately 80% of the total ingested arsenic was excreted in the urine during the 4 days of the experiment. There was a lag-period of approximately 13 h before substantial quantities of arsenic appeared in the urine, and the excretion rate peaked between 22 and 31 h. At least 12 arsenic metabolites were detected, only 3 of which could be positively identified. Dimethylarsinate (DMA) was the major metabolite, constituting 67% of the total arsenicals excreted. A new urinary arsenic metabolite, dimethylarsinoylethanol, represented 5% of the total arsenicals, whereas trimethylarsine oxide was present as a trace (0.5%) constituent. One other significant metabolite cochromatographed with a reduced DMA standard, and hence was possibly dimethylarsinous acid. The second most abundant metabolite in the urine (20% of the total arsenic) remained unidentified, whereas the rest of the excreted arsenic was made up of several trace metabolites and small amounts of unchanged arsenosugar. CONCLUSIONS Arsenosugars are biotransformed by humans to at least 12 arsenic metabolites, the toxicologies of which are currently unknown.
منابع مشابه
In vitro intestinal bioavailability of arsenosugar metabolites and presystemic metabolism of thio-dimethylarsinic acid in Caco-2 cells
Whereas inorganic arsenic is classified as a human carcinogen, risks to human health related to the presence of arsenosugars in marine food are still unclear. Since studies indicate that human inorganic arsenic metabolites contribute to inorganic arsenic induced carcinogenicity, a risk assessment for arsenosugars should also include a toxicological characterization of their respective metabolit...
متن کاملEffect of arsenosugar ingestion on urinary arsenic speciation.
We developed and evaluated a method for the determination of microgram/L concentrations of individual arsenic species in urine samples. We have mainly studied arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid (MMAA), and dimethylarsinic acid (DMAA) because these are the most commonly used biomarkers of exposure by the general population to inorganic arsenic and because of concerns ov...
متن کاملRelation between airborne arsenic trioxide and urinary excretion of inorganic arsenic and its methylated metabolites.
The relation between exposure to As2O3 fumes and dust, and the urinary excretion of inorganic arsenic metabolites (monomethylarsonic acid, dimethylarsinic acid, unchanged inorganic arsenic) has been studied in 18 workers from a sulphuric acid producing plant. The concentration of arsenic in the breathing zone of each worker was measured during five consecutive days and urine samples were obtain...
متن کاملHuman urinary arsenic excretion after one-time ingestion of seaweed, crab, and shrimp.
We studied chemical speciation of arsenic compounds in urine samples by using HPLC with inductively coupled plasma mass spectrometry detection. We examined urinary arsenic excretion patterns and the arsenic species excreted from nine human subjects who ingested seaweed products and crab (or shrimp). Fast urinary excretion of unchanged arsenobetaine was seen after ingestion of crab and shrimp, w...
متن کاملToxicological properties of the thiolated inorganic arsenic and arsenosugar metabolite thio-dimethylarsinic acid in human bladder cells.
Thio-dimethylarsinic acid (thio-DMA(V)) has recently been identified as human metabolite after exposure toward both the human carcinogen inorganic arsenic and arsenosugars, which are the major arsenical constituents of marine algae. This study aims to get further insight in the toxic modes of action of thio-DMA(V) in cultured human urothelial cells. Among others effects of thio-DMA(V) on eight ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical chemistry
دوره 48 1 شماره
صفحات -
تاریخ انتشار 2002